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ABSTRACT This report describes linezolid susceptibility testing results for 6,741
Gram-positive pathogens from 60 U.S. sites collected during 2015 for the LEADER
Program. In addition, the report summarizes linezolid in vitro activity, resistance
mechanisms, and molecular typing obtained for 2011 to 2015. During 2015, linezolid
showed potent activity in testing against Staphylococcus aureus, inhibiting �99.9%
of 3,031 isolates at �2 �g/ml. Similarly, linezolid showed coverage against 99.2% of
coagulase-negative staphylococci, 99.7% of enterococci, and 100.0% of Streptococcus
pneumoniae, virdans group, and beta-hemolytic streptococcus isolates tested. The
overall linezolid resistance rate remained a modest �1% from 2011 to 2015. Staphy-
lococci, especially Staphylococcus epidermidis, showed a range of linezolid resistance
mechanisms. Increased annual trends for the presence of cfr among Staphylococcus
aureus isolates were not observed, but 64.3% (9/14) of the isolates with decreased
susceptibility (MIC, �4 �g/ml) to linezolid carried this transferrable gene (2011 to
2015). The cfr gene was detected in 21.9% (7/32) of linezolid-resistant staphylococci
other than S. aureus from 2011 to 2015. The optrA gene was noted in half (2/4) of
the population of linezolid-nonsusceptible Enterococcus faecalis isolates from 2011 to
2015, while linezolid-nonsusceptible Enterococcus faecium isolates showed alterations
predominantly (16/16) in the 23S rRNA gene (G2576T). This report confirms a long
record of linezolid activity against Gram-positive isolates in the United States since
regulatory approval in 2000 and reports the oxazolidinones evolving resistance
mechanisms.
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Linezolid, the first member of the oxazolidinone class of antimicrobial agents, has
demonstrated clinical effectiveness for treating respiratory tract and skin and soft

tissue infections caused by a variety of Gram-positive pathogens, including methicillin-
resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE),
since its introduction in 2000 (1–4). The clinical data have been supported by the
LEADER Surveillance Program, established in 2004 to detect emerging antimicrobial
resistance among Gram-positive cocci (GPC) in the United States (5). For 12 consecutive
years, this program has provided yearly information regarding linezolid resistance
mechanisms, including the identification of new and emerging mechanisms (6–11).

Linezolid exerts its antibacterial activity by inhibiting protein synthesis by binding to
the 23S subunit of the 50S ribosome (12). Resistance development appeared early in
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clinical use in staphylococci and enterococci through ribosomal mutation in the 23S
rRNA (6, 13). Subsequently, an rRNA methyltransferase was identified that conferred
resistance to linezolid and other antimicrobial agents (7, 9, 14, 15; see https://doi-org
.ezproxy.library.tufts.edu/10.1093/jac/dkx023). This cfr rRNA methyltransferase has the
potential to mobilize, and, although it has been detected among an expanding number
of GPC, it is still not the dominant mechanism of linezolid resistance among clinical GPC
(5). The optrA gene, an additional mobile element, was reported in 2015 and confers
oxazolidinone resistance (16).

Although linezolid resistance in GPC has evolved during the 12-year history of
LEADER to include new species and resistance mechanisms, the overall linezolid
resistance rate has remained modest at �1% (10, 11, 17). Table 1 summarizes the
linezolid nonsusceptibility rates documented in the United States during the last 5
years of the LEADER Program, illustrating the low rates observed for the monitored
species and groups of GPC. In this report, we present the 2015 U.S. LEADER Program
results and compare them with the 2011–2014 results. The comparisons focus on
linezolid in vitro activity, resistance mechanisms, and molecular typing among GPC.

RESULTS AND DISCUSSION

All S. aureus isolates tested during 2015 (n � 3,031), except 1 isolate displaying an
MIC value at 8 �g/ml, were inhibited by linezolid at �2 �g/ml (Tables 2, 3, and 4).
Daptomycin, vancomycin, teicoplanin, tigecycline, and trimethoprim-sulfamethoxazole
demonstrated high antimicrobial coverage (100% susceptibility) against MRSA, while
levofloxacin (67.6% resistance), erythromycin (84.0%), and clindamycin (26.9 and 16.4%
constitutive and inducible resistance, respectively) showed high resistance rates (Table
3). In the last 5 years of the LEADER Program, S. aureus isolates with decreased
susceptibility (MIC, �4 �g/ml) to linezolid showed the presence of cfr, mutations in the
23S rRNA gene and/or L3 gene, and/or a combination of these resistance mechanisms
(Table 4). Although no annual trends seem to exist for the presence of cfr, 64.3% (9/14)
of the S. aureus isolates with decreased susceptibility to linezolid carried this gene
during the 2011–2015 interval. This genetic presence remains of particular importance
due to this species causing community- and hospital-acquired infections and because
these organisms often display a linezolid MIC result at the CLSI and European Com-
mittee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint for susceptibility
(i.e., �4 �g/ml) (18, 19). The proximity to the breakpoint may make detecting this
mobile resistance determinant difficult, which emphasizes the importance of active
surveillance.

Nearly all (99.2%) coagulase-negative staphylococci (CoNS) were inhibited by lin-
ezolid at �2 �g/ml; however, 7 (0.8%) CoNS isolates displayed MIC values of �16
�g/ml during 2015 (Tables 2 and 4). Tigecycline, linezolid, and daptomycin were the
most potent agents tested against CoNS isolates, followed by vancomycin and teico-
planin. Other agents had limited activity (40.5% to 86.7% susceptibility; Table 3). For
2011 to 2015, LEADER Program S. epidermidis isolates represented the vast majority of
CoNS species (96.9%; 31/32) that displayed a linezolid resistance phenotype (Table 4).

TABLE 1 Summary of the linezolid nonsusceptibility rates documented during the
LEADER Program for 2011 to 2015

Organism(s) (no. tested)

% linezolid nonsusceptibilitya

2011 2012 2013 2014 2015 2011–2015

S. aureus (15,177) 0.1 �0.1 0.1 0.1 �0.1 0.1
Coagulase-negative staphylococci (3,815) 1.2 0.9 0.5 0.6 0.8 0.8
Enterococci (4,849) 0.4 0.5 0.6 0.7 0.3 0.5
S. pneumoniae (5,221) 0.0 0.0 0.0 0.0 0.0 0.0
Viridans group streptococci (1,601) 0.7 0.0 0.3 0.0 0.0 0.1
Beta-hemolytic streptococci (4,100) 0.0 0.0 0.0 0.0 0.0 0.0
aPercentages of linezolid nonsusceptibility for 2011 to 2015 were adapted from Mendes et al. (17), Flamm et
al. (11), and this study.
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TABLE 3 Comparative activity of linezolid tested against 6,741 Gram-positive pathogens isolated during the 2015 LEADER Program

Organism/resistance group (no. tested)
and antimicrobial agent MIC50 (�g/ml) MIC90 (�g/ml) Range (�g/ml) CLSI (%S/%R)a

S. aureus
Oxacillin susceptible (1,640)

Linezolid 1 1 �0.12 to 2 100.0/0.0
Vancomycin 0.5 1 �0.12 to 2 100.0/0.0
Teicoplanin �0.5 �0.5 �0.5 to 8 100.0/0.0
Daptomycin 0.25 0.5 �0.12 to 1 100.0/—
Erythromycin 0.25 �8 �0.06 to �8 64.6/28.1
Clindamycin �0.25 �0.25 �0.25 to �2 94.4/5.4
Tetracycline �0.5 �0.5 �0.5 to �8 95.9/3.2
Tigecyclineb 0.06 0.12 �0.015 to 0.5 100.0/—
Gentamicin �1 �1 �1 to �8 98.6/1.3
Levofloxacin 0.12 4 �0.03 to �4 88.5/11.2
Trimethoprim-sulfamethoxazole �0.5 �0.5 �0.5 to �4 99.4/0.6

Oxacillin resistant (1,391)
Linezolid 1 1 �0.12 to �8 99.9/0.1
Vancomycin 0.5 1 �0.12 to 2 100.0/0.0
Teicoplanin �0.5 �0.5 �0.5 to 8 100.0/0.0
Daptomycin 0.25 0.5 �0.12 to 1 100.0/—
Erythromycin �8 �8 �0.06 to �8 12.5/84.0
Clindamycin �0.25 �2 �0.25 to �2 72.6/26.9
Tetracycline �0.5 �0.5 �0.5 to �8 94.2/4.8
Tigecyclineb 0.06 0.12 �0.015 to 0.5 100.0/—
Gentamicin �1 �1 �1 to �8 96.1/3.8
Levofloxacin 4 �4 0.12 to �4 30.7/67.6
Trimethoprim-sulfamethoxazole �0.5 �0.5 �0.5 to �4 97.2/2.8

Coagulase-negative staphylococci
Oxacillin susceptible (381)c

Linezolid 0.5 1 �0.12 to 2 100.0/0.0
Vancomycin 0.5 2 �0.12 to 2 100.0/0.0
Teicoplanin �0.5 4 �0.5 to 8 100.0/0.0
Daptomycin 0.25 0.5 �0.12 to 1 100.0/—
Erythromycin 0.12 �8 �0.06 to �8 65.6/32.3
Clindamycin �0.25 �0.25 �0.25 to �2 91.1/7.9
Tetracycline �0.5 1 �0.5 to �8 92.4/6.0
Tigecyclineb 0.06 0.12 �0.015 to 0.5 100.0/0.0
Gentamicin �1 �1 �1 to �8 97.4/2.4
Levofloxacin 0.25 4 �0.03 to �4 84.8/14.2
Trimethoprim-sulfamethoxazole �0.5 2 �0.5 to �4 90.3/9.7

Oxacillin resistant (543)d

Linezolid 0.5 1 �0.12 to �8 98.7/1.3
Vancomycin 1 2 �0.12 to 2 100.0/0.0
Teicoplanin 2 4 �0.5 to 16 99.3/0.0
Daptomycin 0.5 0.5 �0.12 to 1 100.0/—
Erythromycin �8 �8 �0.06 to �8 22.8/74.2
Clindamycin �0.25 �2 �0.25 to �2 57.8/39.0
Tetracycline �0.5 �8 �0.5 to �8 82.7/16.0
Tigecyclineb 0.06 0.25 0.03 to 0.5 100.0/0.0
Gentamicin �1 �8 �1 to �8 65.9/30.8
Levofloxacin �4 �4 �0.03 to �4 39.8/57.6
Trimethoprim-sulfamethoxazole 1 �4 �0.5 to �4 63.5/36.5

Enterococcus spp.e (973)
Linezolid 1 1 �0.25 to 8 99.7/0.2
Ampicillin 1 �8 �0.5 to �8 76.6/23.4
Vancomycin 1 �16 �0.5 to �16 78.3/21.6
Teicoplanin �2 �16 �2 to �16 79.1/18.4
Daptomycin 1 2 �0.25 to �8 99.8/—
Tigecyclineb 0.06 0.12 �0.015 to 0.5 99.8/0.0
Levofloxacin 1 �4 �0.5 to �4 59.3/39.0
Piperacillin-tazobactam 4 �16 �2 to �16 76.3/23.4

S. pneumoniae (850)
Linezolid 1 1 0.25 to 2 100.0/—

(Continued on next page)
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In addition, CoNS species possessed multiple combinations of linezolid resistance
mechanisms, usually alterations in 23S rRNA, L3, and/or L4. The cfr gene was observed
in 21.9% (7/32) of linezolid-resistant CoNS isolates during those 5 years.

Linezolid was equally potent against Enterococcus faecalis and E. faecium (MIC50/90,
1/1 �g/ml for both; Table 2) during 2015. All E. faecalis isolates remained susceptible to
ampicillin, and a total of 68.9% (186/270) and 3.2% (24/676) of E. faecium and E. faecalis
isolates were vancomycin resistant, respectively (96.2% VanA phenotype; data not
shown). Overall, tigecycline (MIC50/90, 0.06/0.12 �g/ml) was the most potent agent
against the U.S. collection of enterococci, followed by linezolid (MIC50/90, 1/1 �g/ml)

TABLE 3 (Continued)

Organism/resistance group (no. tested)
and antimicrobial agent MIC50 (�g/ml) MIC90 (�g/ml) Range (�g/ml) CLSI (%S/%R)a

Penicillinf �0.06 1 �0.06 to 4 96.7/0.0
Penicilling �0.06 1 �0.06 to 4 63.2/7.5
Amoxicillin-clavulanate �0.03 2 �0.03 to 4 95.2/1.9
Ceftriaxoneh 0.03 1 �0.015 to �2 98.4/0.5
Vancomycin 0.25 0.25 �0.03 to 0.5 100.0/—
Erythromycin 0.03 �2 �0.015 to �2 56.5/42.9
Clindamycin �0.12 �1 �0.12 to �1 85.0/14.4
Levofloxacin 1 1 0.25 to �4 99.3/0.7
Tetracycline 0.25 �4 �0.12 to �4 80.1/19.7
Tigecyclineb 0.03 0.06 0.015 to 0.12 99.9/—
Trimethoprim-sulfamethoxazole �0.5 �4 �0.5 to �4 74.7/14.0

Viridans group and other streptococci (236)i

Linezolid 0.5 1 �0.06 to 1 100.0/—
Penicillin �0.03 0.5 �0.03 to �4 79.1/2.7
Ceftriaxone 0.12 0.5 �0.03 to �4 97.3/1.8
Vancomycin 0.5 0.5 �0.06 to 1 100.0/—
Daptomycin 0.5 0.5 �0.06 to 1 100.0/—
Erythromycin 0.5 �4 �0.03 to �4 46.7/48.4
Clindamycin 0.03 �2 �0.015 to �2 83.1/16.4
Levofloxacin 1 2 �0.03 to �4 92.4/7.1
Tetracycline 1 �8 �0.25 to �8 56.4/39.6
Tigecyclineb 0.03 0.06 �0.008 to 0.25 100.0/—

Beta-hemolytic streptococci (727)j

Linezolid 1 1 0.5 to 1 100.0/—
Penicillin �0.03 0.06 �0.03 to 0.12 100.0/—
Ceftriaxone �0.03 0.06 �0.03 to 0.25 100.0/—
Vancomycin 0.25 0.5 �0.06 to 1 100.0/—
Daptomycin 0.12 0.5 �0.06 to 1 100.0/—
Erythromycin 0.06 �4 �0.03 to �4 60.8/38.2
Clindamycin 0.06 �2 �0.015 to �2 78.7/20.9
Levofloxacin 0.5 1 0.06 to �4 99.3/0.3
Tetracycline 4 �8 �0.25 to �8 49.7/48.8
Tigecyclineb 0.06 0.06 0.015 to 0.25 100.0/—

aCriteria employed were as published by the CLSI (18). %S/%R, percent susceptible/percent resistant; —, lack of resistant breakpoint.
bU.S. FDA breakpoints were applied for tigecycline.
cThe organisms tested included Staphylococcus auricularis (2 isolates), S. capitis (36 isolates), S. caprae (10 isolates), S. condimenti (2 isolates), S. epidermidis (153
isolates), S. hemolyticus (12 isolates), S. hominis (32 isolates), S. lugdunensis (109 isolates), S. pseudintermedius (2 isolates), S. saprophyticus (2 isolates), S. schleiferi (2
isolates), S. simulans (11 isolates), and S. warneri (8 isolates).

dThe organisms tested included S. auricularis (1 isolate), S. capitis (13 isolates), S. cohnii (5 isolates), S. caprae (2 isolates), S. epidermidis (402 isolates), S. hemolyticus (37
isolates), S. hominis (35 isolates), S. lugdunensis (6 isolates), S. pettenkoferi (4 isolates), S. pseudintermedius/S. intermedius/S. delphini (1 isolate), S. saprophyticus (22
isolates), S. schleiferi (1 isolate), S. simulans (9 isolates), and S. warneri (5 isolates).

eThe organisms tested included Enterococcus avium (5 isolates), E. casseliflavus (6 isolates), E. durans (3 isolates), E. faecalis (676 isolates), E. faecium (270 isolates), E.
gallinarum (11 isolates), E. raffinosus (1 isolate), and E. thailandicus (1 isolate).

fCriteria employed were as published by the CLSI for penicillin parenteral (nonmeningitis) (18).
gCriteria employed were as published by the CLSI for penicillin (oral penicillin V) (18).
hCriteria employed were as published by the CLSI for nonmeningitis (18).
iThe organisms tested included Streptococcus anginosus (57 isolates), S. anginosus group (10 isolates), S. australis (2 isolates), S. constellatus (7 isolates), S. cristatus (2
isolates), S. equinus (1 isolate), S. gallolyticus (9 isolates), S. gordonii (2 isolates), S. infantarius (1 isolate), S. infantis (2 isolates), S. intermedius (9 isolates), S. lutetiensis (4
isolates), S. mitis (5 isolates), S. mitis group (8 isolates), S. mitis/S. oralis (47 isolates), S. mutans (3 isolates), S. oralis (33 isolates), S. parasanguinis (14 isolates), S.
salivarius (6 isolates), S. salivarius group (4 isolates), S. sanguinis (8 isolates), and S. vestibularis (2 isolates).

jThe organisms tested included Streptococcus pyogenes (297 isolates), S. agalactiae (341 isolates), S. equi (1 isolate), and S. dysgalactiae (89 isolates).
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TABLE 4 Isolates with elevated or nonsusceptible linezolid MIC values observed during the 2011–2015 LEADER Program

Organism Yr City State
LZD MIC
(�g/ml)a Resistance mechanism(s) (mutation[s]) PFGE typeb

S. aureus 2011 Akron OH 4 cfr SA4I
S. aureus 2011 Houston TX 8 23S rRNA (G2576T)
S. aureus 2011 Long Beach CA 8 cfr; 23S rRNA (G2576T) SA146A
S. aureus 2011 Louisville KY 8 cfr
S. aureus 2011 Milwaukee WI 4 L3 (ΔS145)
S. aureus 2012 Indianapolis IN 4 cfr
S. aureus 2012 Maywood IL 4 cfr
S. aureus 2012 New York NY 32 23S rRNA (G2576T); L3 (ΔS145)
S. aureus 2013 Detroit MI 8 cfr
S. aureus 2013 Long Beach CA 32 cfr; 23S rRNA (G2576T); L3 (D159E, G152D) SA146A
S. aureus 2014 Long Beach CA 8 23S rRNA (G2576T) SA468A
S. aureus 2014 Long Beach CA 16 cfr; 23S rRNA (G2576T); L3 (ΔH146, P151L) SA468B
S. aureus 2014 New Orleans LA 4 cfr
S. aureus 2015 Long Beach CA 8 23S rRNA (G2576T) SA468A
S. epidermidis 2011 Cleveland OH 32 23S rRNA (G2576T); L3 (M156T, H146P, G137S, F147Y); L4 (71G72 insc)
S. epidermidis 2011 Hackensack NJ 64 23S rRNA (G2576T); L3 (V154L, M156T, H146R, G137D); L4 (71G72 ins)
S. epidermidis 2011 Hershey PA 64 23S rRNA (G2576T); L3 (V154L, M156T, H146R) SEPI453C
S. epidermidis 2011 Houston TX 64 23S rRNA (G2576T); L3 (M156T, H146P, G137S) SEPI116D
S. epidermidis 2011 Houston TX 16 L3 (V154L, H146Q, A157R); L4 (71G72 ins) SEPI116E
S. epidermidis 2011 Memphis TN 128 23S rRNA (G2576T); L3 (V154L, M156T, H146R); L4 (71G72 ins) SEPI436A
S. epidermidis 2011 Memphis TN 128 23S rRNA (G2576T); L3 (V154L, M156T, H146R); L4 (71G72 ins) SEPI436A
S. epidermidis 2011 New Brunswick NJ 64 23S rRNA (G2576T) SEPI129I
S. epidermidis 2011 New Orleans LA 64 23S rRNA (G2576T) SEPI448F
S. epidermidis 2012 Burlington MA 16 L3 (V154L, A157R); L4 (71G72 ins)
S. epidermidis 2012 Detroit MI 128 23S rRNA (G2576T); L3 (G137S, H146P, F147Y, M156T); L4 (71G72 ins) SEPI3K
S. epidermidis 2012 Memphis TN 16 L3 (H146Q, V154L, A157R); L4 (71G72 ins) SEPI412C
S. epidermidis 2012 New Brunswick NJ 32 23S rRNA (G2576T); L3 (H146R, V154L, M156T); L4 (71G72 ins) SEPI129B
S. epidermidis 2012 Philadelphia PA 16 L3 (H146Q, V154L, A157R); L4 (71G72 ins)
S. epidermidis 2012 Winston-Salem NC 128 23S rRNA (G2576T); L3 (G137S, H146P, M156T); L4 (71G72 ins) SEPI454E
S. epidermidis 2012 Winston-Salem NC 128 23S rRNA (G2576T); L3 (G137S, H146P, M156T); L4 (71G72 ins) SEPI454E
S. epidermidis 2013 Detroit MI 128 23S rRNA (G2576T); L3 (G137S, H146P, M156T); L4 (71G72 ins) SEPI3K
S. epidermidis 2013 Houston TX 64 23S rRNA (G2576T); L3 (H146R, M156T); L4 (71G72 ins) SEPI116F
S. epidermidis 2013 Winston-Salem NC 32 23S rRNA (G2576T); L3 (H146P, M156T) SEPI454E
S. epidermidis 2014 Houston TX 64 23S rRNA (G2576T); L3 (G137S, H146P, M156T); L4 (71G72 ins) SEPI116D
S. epidermidis 2014 Houston TX 128 cfr; L3 (H146Q, V154L, A157R); L4 (71G72 ins) SEPI116E
S. epidermidis 2014 Long Beach CA 128 cfr; L3 (G137S, H146Q, V154L, A157R); L4 (71G72 ins) SEPI468B
S. epidermidis 2014 Memphis TN �128 cfr; 23S rRNA (G2576T); L4 (G137S, H146P, F147Y, M156T); L4 (71G72 ins) SEPI412F
S. epidermidis 2014 San Francisco CA �128 cfr; L3 (H146Q, V154L, A157R); L4 (71G72 ins) SEPI470A
S. epidermidis 2015 Houston TX 128 cfr; 23S rRNA (C2534T); L3 (V154L, A157R); L4 (71G72 ins) SEPI116E
S. epidermidis 2015 Houston TX �128 cfr; 23S rRNA (C2534T); L3 (H146Q, V154L, A157R) SEPI116E
S. epidermidis 2015 Houston TX 16 23S rRNA (C2534T); L3 (H146Q, V154L, A157R); L4 (71G72 ins) SEPI116E1
S. epidermidis 2015 Houston TX 16 L3 (V96D, H146Q, V154L, A157R); L4 (71G72 ins) SEPI116G
S. epidermidis 2015 Long Beach CA 16 23S rRNA (G2576T); L3 (V154L, M156T) SEPI468C
S. epidermidis 2015 Memphis KY 128 23S rRNA (G2576T); L3 (Q136L, H146R, M156T); L4 (71G72 ins) SEPI412F
S. epidermidis 2015 Winston-Salem NC 16 23S rRNA (G2576T); L3 (H146P, M156T) SEPI454E
S. hominis 2014 Seattle WA 8 cfr; L3 (M169L)
S. sanguinis 2013 Aurora CO 4 23S rRNA (G2576T); L4 (A22T)
E. faecalis 2012 Wauwatosa WI 4 23S rRNA (G2576T)
E. faecalis 2013 Hershey PA 8 23S rRNA (G2576T)
E. faecalis 2014 Burlington VT 8 optrA
E. faecalis 2015 Milwaukee WI 4 optrA
E. faecium 2012 Houston TX 8 23S rRNA (G2576T) EFM116B
E. faecium 2012 Lansing MI 8 23S rRNA (G2576T)
E. faecium 2012 New Orleans LA 4 23S rRNA (G2576T) EFM448A
E. faecium 2012 New Orleans LA 8 cfr(B); 23S rRNA (G2576T) EFM448B
E. faecium 2013 Akron OH 32 23S rRNA (G2576T)
E. faecium 2013 Houston TX 16 23S rRNA (G2576T) EFM116C
E. faecium 2013 Los Angeles CA 32 23S rRNA (G2576T) EFM467A
E. faecium 2013 Maywood IL 8 23S rRNA (G2576T)
E. faecium 2013 New Orleans LA 8 cfr(B); 23S rRNA (G2576T) EFM448B
E. faecium 2014 Atlanta GA 8 cfr(B); 23S rRNA (G2576T)
E. faecium 2014 Charlottesville VA 4 23S rRNA (G2576T)
E. faecium 2014 Fairbanks AK 8 23S rRNA (G2576T) EFM461A

(Continued on next page)
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and daptomycin (MIC50/90, 1/2 �g/ml). Other agents showed narrower antimicrobial
coverage (59.3% to 79.1% susceptibility; Table 3). Alterations in the 23S rRNA remained
important linezolid resistance mechanisms in enterococci during the 2011–2015 inter-
val (Table 4). Three E. faecium isolates from New Orleans and Atlanta also carried the cfr
variant cfr(B) (9); note that the newly described transferable optrA gene was found in 2
E. faecalis isolates from Vermont and Wisconsin in 2014 to 2015. This gene was first
reported in enterococci from China in 2015 (16) and has been detected since then in
human clinical specimens from several continents (8, 20–24).

Linezolid showed uniform potency against the 2015 collection of Streptococcus
pneumoniae (MIC50/90, 1/1 �g/ml), viridans group streptococci (MIC50/90, 0.5/1 �g/ml),
and beta-hemolytic streptococci (MIC50/90, 1/1 �g/ml) (Tables 2 and 3). Moreover,
ceftriaxone, levofloxacin, daptomycin, tigecycline, and vancomycin had good antimi-
crobial coverage (�91.5% susceptibility) against these species (Table 3). The linezolid
resistance phenotype among clinical streptococcal isolates remains rare in the litera-
ture, although studies have reported strains exhibiting target site alterations (5, 25–27).

Additional genetic analysis demonstrated the presence of clonally related strains, a
feature noted among 20.0% of enterococcus isolates, 28.6% of S. aureus isolates, and
43.8% of CoNS isolates (Table 4). The higher occurrence of clonality among CoNS
isolates is likely due to the ability of S. epidermidis to establish and persist in nosocomial
environments (28).

This report confirms high susceptibility rates for linezolid against isolates from U.S.
hospitals during 2015 and confirms sustained rates compared with previous surveil-
lance years (Table 1). The low number of isolates nonsusceptible to linezolid relates to
target site modifications, which remain the main resistance mechanism, developing
slowly due to the redundancy of rRNA in bacteria (14). Isolates carrying target site
mutations and/or cfr have been associated with prolonged drug exposure in at-risk
patient populations, and these isolates can also disseminate due to breaks in infection
prevention practices that lead to local outbreaks or endemic occurrences (25, 29–31).
In addition, occasional outbreaks of cfr-carrying isolates have been reported; those
outbreaks were usually contained after infection control measures were implemented
(30, 32, 33). However, others reported unsuccessful results with respect to suppressing
cfr isolates despite implementing control measures (34), which can be observed here by
the presence of eventual clonal isolates recovered over time in the same institution
(Table 4). Although the prevalence of optrA isolates remained low, the total number
represented half of E. faecalis isolates that met the screening criteria in this study. Moreover,
rapid optrA emergence has been reported worldwide (8). Therefore, maintaining such
local/national and/or global surveillance programs is prudent to monitor the drug activity
and spectrum and to detect resistance development and/or acquisition.

MATERIALS AND METHODS
Clinical isolates. A total of 6,741 GPC isolates cultured in 60 U.S. (37 states) medical centers, located

in all 9 U.S. census divisions, were submitted to JMI Laboratories (North Liberty, Iowa, USA) during the
2015 LEADER survey. Participating laboratories primarily identified isolates that the reference monitoring
laboratory (JMI Laboratories) confirmed by standard algorithms, and the results were supported by

TABLE 4 (Continued)

Organism Yr City State
LZD MIC
(�g/ml)a Resistance mechanism(s) (mutation[s]) PFGE typeb

E. faecium 2014 Fairbanks AK 8 23S rRNA (G2576T) EFM461A1
E. faecium 2014 Los Angeles CA 16 23S rRNA (G2576T) EFM467B
E. faecium 2015 Houston TX 8 23S rRNA (G2576T) EFM116D
E. faecium 2015 Seattle WA 8 23S rRNA (G2576T); L3 (K95T)
aPreliminarily determined elevated MIC values (�4 �g/ml) were confirmed by using a customized frozen-form panel with an extended linezolid (LZD) dilution range
(i.e., 1 to 128 �g/ml).

bPulsed-field gel electrophoresis (PFGE) types were assigned according to the organism code, the origin of the isolate (medical site number), a capital letter (type),
and a number (subtype), when applicable. Only PFGE profiles from same species isolates recovered from the same medical site were compared. PFGE types that
included more than 1 isolate representing clonal dissemination are in bold.

cins, insertion.
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matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS; Bruker
Daltonics, Bremen, Germany).

Antimicrobial susceptibility testing. Broth microdilution susceptibility testing of all isolates was
performed in the reference monitoring laboratory and followed the Clinical and Laboratory Standards
Institute (CLSI) M07-A10 document (35). Bacterial inoculum density was monitored by colony counts to
ensure an adequate number of cells for each testing event. MIC values were validated by concurrently
testing CLSI-recommended quality control reference strains (Staphylococcus aureus ATCC 29213, Entero-
coccus faecalis ATCC 29212, and Streptococcus pneumoniae ATCC 49619) (18). MIC interpretations were
based on the CLSI M100-S27 (2017) breakpoint criteria, as available (18); however, tigecycline MIC results
were interpreted using U.S. Food and Drug Administration criteria (36). Isolates resistant to erythromycin
but susceptible to clindamycin were subjected to the CLSI broth microdilution inducible clindamycin
resistance screening test (18, 35).

Detection of linezolid resistance mechanisms and epidemiologic typing. Isolates that showed
elevated MIC results for linezolid (i.e., MIC, �4 �g/ml) were selected for further characterization at the
central laboratory. The presence of cfr and cfr(B) and mutations in the 23S rRNA and ribosomal proteins
(L3, L4, and L22) were investigated by PCR and sequencing of amplicons on both strands (25, 32, 37). In
addition, isolates were screened for the newly described optrA gene (16). Isolates exhibiting decreased
susceptibility to linezolid that were the same species and recovered from the same medical site
underwent pulsed-field gel electrophoresis (7, 32, 37).
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